3.709 \(\int \frac{x^2}{(a+b x^2) \sqrt{c+d x^2}} \, dx\)

Optimal. Leaf size=82 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{b \sqrt{d}}-\frac{\sqrt{a} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{b \sqrt{b c-a d}} \]

[Out]

-((Sqrt[a]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(b*Sqrt[b*c - a*d])) + ArcTanh[(Sqrt[d]*x)/S
qrt[c + d*x^2]]/(b*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.0497784, antiderivative size = 82, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {483, 217, 206, 377, 205} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{b \sqrt{d}}-\frac{\sqrt{a} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{b \sqrt{b c-a d}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

-((Sqrt[a]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(b*Sqrt[b*c - a*d])) + ArcTanh[(Sqrt[d]*x)/S
qrt[c + d*x^2]]/(b*Sqrt[d])

Rule 483

Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^(n_))^(q_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Dist[e^n/b, Int[
(e*x)^(m - n)*(c + d*x^n)^q, x], x] - Dist[(a*e^n)/b, Int[((e*x)^(m - n)*(c + d*x^n)^q)/(a + b*x^n), x], x] /;
 FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1] && IntBinomialQ[a, b
, c, d, e, m, n, -1, q, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^2}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx &=\frac{\int \frac{1}{\sqrt{c+d x^2}} \, dx}{b}-\frac{a \int \frac{1}{\left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx}{b}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{1-d x^2} \, dx,x,\frac{x}{\sqrt{c+d x^2}}\right )}{b}-\frac{a \operatorname{Subst}\left (\int \frac{1}{a-(-b c+a d) x^2} \, dx,x,\frac{x}{\sqrt{c+d x^2}}\right )}{b}\\ &=-\frac{\sqrt{a} \tan ^{-1}\left (\frac{\sqrt{b c-a d} x}{\sqrt{a} \sqrt{c+d x^2}}\right )}{b \sqrt{b c-a d}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{b \sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 0.0478693, size = 85, normalized size = 1.04 \[ \frac{\log \left (\sqrt{d} \sqrt{c+d x^2}+d x\right )}{b \sqrt{d}}-\frac{\sqrt{a} \tan ^{-1}\left (\frac{x \sqrt{b c-a d}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{b \sqrt{b c-a d}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

-((Sqrt[a]*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(b*Sqrt[b*c - a*d])) + Log[d*x + Sqrt[d]*Sqr
t[c + d*x^2]]/(b*Sqrt[d])

________________________________________________________________________________________

Maple [B]  time = 0.01, size = 337, normalized size = 4.1 \begin{align*}{\frac{1}{b}\ln \left ( x\sqrt{d}+\sqrt{d{x}^{2}+c} \right ){\frac{1}{\sqrt{d}}}}-{\frac{a}{2\,b}\ln \left ({ \left ( -2\,{\frac{ad-bc}{b}}-2\,{\frac{d\sqrt{-ab}}{b} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }+2\,\sqrt{-{\frac{ad-bc}{b}}}\sqrt{ \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) ^{2}d-2\,{\frac{d\sqrt{-ab}}{b} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \right ) \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{-ab}}}{\frac{1}{\sqrt{-{\frac{ad-bc}{b}}}}}}+{\frac{a}{2\,b}\ln \left ({ \left ( -2\,{\frac{ad-bc}{b}}+2\,{\frac{d\sqrt{-ab}}{b} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }+2\,\sqrt{-{\frac{ad-bc}{b}}}\sqrt{ \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) ^{2}d+2\,{\frac{d\sqrt{-ab}}{b} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \right ) \left ( x-{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{-ab}}}{\frac{1}{\sqrt{-{\frac{ad-bc}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x)

[Out]

1/b*ln(x*d^(1/2)+(d*x^2+c)^(1/2))/d^(1/2)-1/2*a/(-a*b)^(1/2)/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a
*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-
a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))+1/2*a/(-a*b)^(1/2)/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*
c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)
/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.87811, size = 1337, normalized size = 16.3 \begin{align*} \left [\frac{d \sqrt{-\frac{a}{b c - a d}} \log \left (\frac{{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \,{\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \,{\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{3} -{\left (a b c^{2} - a^{2} c d\right )} x\right )} \sqrt{d x^{2} + c} \sqrt{-\frac{a}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 2 \, \sqrt{d} \log \left (-2 \, d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{d} x - c\right )}{4 \, b d}, \frac{d \sqrt{-\frac{a}{b c - a d}} \log \left (\frac{{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \,{\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \,{\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{3} -{\left (a b c^{2} - a^{2} c d\right )} x\right )} \sqrt{d x^{2} + c} \sqrt{-\frac{a}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) - 4 \, \sqrt{-d} \arctan \left (\frac{\sqrt{-d} x}{\sqrt{d x^{2} + c}}\right )}{4 \, b d}, \frac{d \sqrt{\frac{a}{b c - a d}} \arctan \left (-\frac{{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt{d x^{2} + c} \sqrt{\frac{a}{b c - a d}}}{2 \,{\left (a d x^{3} + a c x\right )}}\right ) + \sqrt{d} \log \left (-2 \, d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{d} x - c\right )}{2 \, b d}, \frac{d \sqrt{\frac{a}{b c - a d}} \arctan \left (-\frac{{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt{d x^{2} + c} \sqrt{\frac{a}{b c - a d}}}{2 \,{\left (a d x^{3} + a c x\right )}}\right ) - 2 \, \sqrt{-d} \arctan \left (\frac{\sqrt{-d} x}{\sqrt{d x^{2} + c}}\right )}{2 \, b d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(d*sqrt(-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*
x^2 - 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^3 - (a*b*c^2 - a^2*c*d)*x)*sqrt(d*x^2 + c)*sqrt(-a/(b*c - a*d)))/
(b^2*x^4 + 2*a*b*x^2 + a^2)) + 2*sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*x - c))/(b*d), 1/4*(d*sqrt(-
a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b^2*
c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^3 - (a*b*c^2 - a^2*c*d)*x)*sqrt(d*x^2 + c)*sqrt(-a/(b*c - a*d)))/(b^2*x^4 + 2*a
*b*x^2 + a^2)) - 4*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)))/(b*d), 1/2*(d*sqrt(a/(b*c - a*d))*arctan(-1/2*
((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt(a/(b*c - a*d))/(a*d*x^3 + a*c*x)) + sqrt(d)*log(-2*d*x^2 - 2*sq
rt(d*x^2 + c)*sqrt(d)*x - c))/(b*d), 1/2*(d*sqrt(a/(b*c - a*d))*arctan(-1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x
^2 + c)*sqrt(a/(b*c - a*d))/(a*d*x^3 + a*c*x)) - 2*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)))/(b*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\left (a + b x^{2}\right ) \sqrt{c + d x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b*x**2+a)/(d*x**2+c)**(1/2),x)

[Out]

Integral(x**2/((a + b*x**2)*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [A]  time = 1.12899, size = 138, normalized size = 1.68 \begin{align*} \frac{a \sqrt{d} \arctan \left (\frac{{\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt{a b c d - a^{2} d^{2}}}\right )}{\sqrt{a b c d - a^{2} d^{2}} b} - \frac{\log \left ({\left (\sqrt{d} x - \sqrt{d x^{2} + c}\right )}^{2}\right )}{2 \, b \sqrt{d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

a*sqrt(d)*arctan(1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2))/(sqrt(a*b*c*d
- a^2*d^2)*b) - 1/2*log((sqrt(d)*x - sqrt(d*x^2 + c))^2)/(b*sqrt(d))